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An algorithm for computing the discrete Fourier transform of data with

threefold symmetry axes is presented. This algorithm is straightforward and

easily implemented. It reduces the computational complexity of such a Fourier

transform by a factor of 3. There are no restrictive requirements imposed on the

initial data. Explicit formulae and a scheme of computing the Fourier transform

are given. The algorithm has been tested and benchmarked against FFT on the

unit cell, revealing the expected increase in speed. This is a non-trivial example

of a more general approach developed recently by the authors.

1. Introduction

It has been known for at least 30 years that taking advantage

of crystallographic symmetries during computation of the

Fourier transform would yield much more ef®cient fast

Fourier transform (FFT) routines for crystallographic data

processing. This is the ®rst in a series of papers devoted to this

problem. Our work has resulted in a set of algorithms for all

230 crystallographic groups. For every one of them, we can

achieve maximal symmetry reduction. By maximal symmetry

reduction, we mean that calculations are performed with the

use of data from an asymmetric unit only. Moreover, at all

times only a region of memory corresponding to the asym-

metric unit has to be allocated. The present paper deals with

the p3 symmetry case. The algorithm for p3 symmetry is

presented here separately because it is one of the most dif®-

cult cases. The notions introduced here will be used in our

forthcoming papers (Rowicka et al., 2002a,b). Last but not

least, focusing on only one symmetry group allows one to

avoid the mathematical formalism necessary to treat the

general case.

Our algorithms reduce both execution time and memory

usage of Fourier transform calculation. In the case of p3

symmetry, this gain would be approximately by a factor of

three compared to the usual p1 (i.e. ignoring underlying

symmetries) FFT routine. There were attempts to handle such

data by a generalized Rader±Winograd approach (Bricogne,

1996). However, the resulting algorithms were too compli-

cated for practical use. We based our approach on the Cooley±

Tukey (Cooley & Tukey, 1965) decomposition, which has the

advantage of a simple geometric interpretation, unlike the

widely discussed Winograd scheme. In the Cooley±Tukey

algorithm, data are divided into subsets consisting of points

regularly distributed in space. Regular spacing has an addi-

tional implementation advantage of an easy-to-optimize

memory-access pattern.

The paper is organized as follows. In x2, we will describe our

choice of the computational grid for the p3 group. In x3, we

choose a non-contiguous asymmetric unit. Next, in x4, we

describe symmetry in the reciprocal space and our choice of an

asymmetric unit in this space. In x5, we derive a formula that

shows that in order to compute a Fourier transform of 9N2

p3-symmetric points it is enough to compute three Fourier

transforms of N2 points each. In xx6 and 7, we present a

detailed description of our algorithm and tests of its imple-

mentation.

2. Computational grid in the real space

The ®rst step in the calculation of a discrete Fourier transform

is to choose a sampling for the data. To allow for the use of the

FFT algorithm, the data have to be sampled on a regular grid.

The choice of an appropriate computational grid is a crucial

step in our scheme. Such a grid has to be carefully adjusted to

the underlying crystallographic symmetry. A valid computa-

tional grid should be invariant under the crystallographic

group action. In other words, every symmetry operator should

transform all grid points onto grid points.

The p3 unit cell in the crystallographic coordinate system is

shown in Fig. 1, with triangles denoting threefold symmetry

axes. As shown in this picture, the unit-cell vertices have

Figure 1
The p3 planar symmetry group: unit cell in the real space. Filled triangles
depict symmetry axes.



coordinates �0; 0�, �0; 1�, �1; 0� and �1; 1�, and the threefold

symmetry axes within the unit cell are at �13 ; 2
3� and at �23 ; 1

3�.
To de®ne our computational grid, we shall introduce a new

grid coordinate system in which all data points have integer

coordinates. In our case, the grid coordinates �x; y� are related

to the crystallographic coordinates ��; �� by

�x; y� � 3N��; �� ÿ 1
3�2; 1�

and conversely

��; �� � �1=3N��x; y� � �1=9N��2; 1�:

The origin of the grid coordinate system is shifted with respect

to the origin of the crystallographic coordinate system by

vector �13 ; 2
3� in the grid coordinates, as shown in Fig. 2

Let ÿ denote the computational grid described above:

ÿ � f�x; y� : x; y � 0; . . . ; 3N ÿ 1g:

Observe that ÿ is invariant under the p3 group action, which is

a necessary condition for ÿ to allow for symmetric calcula-

tions.

In our reasoning, we have never required that the symmetry

axes have integer coordinates in the grid coordinate system. In

fact, they are not in the presented case. Consequently, no data

point will lie on a symmetry axis. Thus, every point from ÿ is

transformed by symmetry operators into a different grid point.

It is one of the main innovations that allows all grid points to

be treated the same way during computations and results in a

simple and practical algorithm.

3. Choice of an asymmetric unit in the real space

Following the notation of Bricogne (1996), we denote the

period lattice by �. In grid coordinates � is spanned by the

vectors �0; 3N� and �3N; 0�. The counterclockwise rotation by

120� around the origin of the crystallographic coordinate

system will be denoted by �. Let the action of � be denoted by

S�. The result of action of � on the point with grid coordinates

�x; y� is

S�
x

y

� �
� 0 ÿ1

1 ÿ1

� �
x

y

� �
ÿ 1

0

� �
� ÿyÿ 1

xÿ y

� �
mod �:

�1�
The symbol mod � should be understood as follows:

m � n mod � if and only if there exist integers p and q such

that mÿ n � p�3N; 0� � q�0; 3N�. This means that m and n

have the same positions in their respective unit cells.

Since the origin of the coordinate system has been shifted, it

no longer coincides with the threefold axis. As a result, the

action of � is no longer represented solely by a rotation

matrix; now it is a superposition of a rotation by matrix R� and

a translation by vector t�:

R� � 0 ÿ1

1 ÿ1

� �
and t� � ÿ 1

0

� �
:

Analogously, the action of �2 (counterclockwise rotation by

240�) can be represented as a superposition of a rotation by

matrix R�2 and a translation by vector t�2 :

R�2 � ÿ1 1

ÿ1 0

� �
and t�2 � ÿ 1

1

� �
:
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Figure 2
Shift of the origin of the coordinate system, in grid coordinates

Figure 3
The unit cell in the real space for N � 6, corresponding to 9� 62 grid
points. Data points are located at centers of the colored triangles. Red
denotes the selected asymmetric unit.

Figure 5
The FFT unit cell in the reciprocal space for N � 6. The data points lie at
the centers of the colored triangles. Red points form the chosen FFT
asymmetric unit.

Figure 4
FFT unit cell in the reciprocal space.
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From (1), the coordinates of a point invariant under the action

of � should be an integer solution of the pair of equations

ÿyÿ 1 � x

xÿ y � y

�
mod 3N:

Hence we get an equation for the second coordinate of the

invariant point

3y � ÿ1 mod 3N:

It is easily seen that this equation has no integer solutions.

Consequently, any point invariant under the action of � has a

fractional coordinate and as such is not contained in ÿ. It can

be easily checked that the same holds for the action of �2. It

means that there are no special points on the grid ÿ. This is a

very desirable property from the computational point of view.

In fact, it was one of the reasons we chose such a coordinate

system.

Let us divide the grid ÿ into three subgrids ÿ0, ÿ1 and ÿ2:

ÿ0 � f�x; y� 2 ÿ : x� y � 0 mod 3g;
ÿ1 � f�x; y� 2 ÿ : x� y � 1 mod 3g;
ÿ2 � f�x; y� 2 ÿ : x� y � 2 mod 3g:

In other words, the grid ÿ0 consists of points whose sum of

coordinates is divisible by 3. From the above de®nition, it is

easily seen that subgrids ÿ0, ÿ1 and ÿ2 are mutually disjoint.

Moreover, since every integer equals 0, 1 or 2 modulo 3, it

follows that

ÿ � ÿ0 [ ÿ1 [ ÿ2: �2�
The subdivision of ÿ is depicted in Fig. 3. All points from ÿ lie

in the centers of colored triangles. Points from ÿ0 are red,

points from ÿ1 are green and ÿ2 is yellow. Observe that every

point �x; y� from ÿ0 is transformed by the action of � into a

point from ÿ2. Analogously, every point �x; y� from ÿ0 is

transformed into a point from ÿ1 by the action of �2. More-

over, every point of ÿ1 and ÿ2 is an image of some point from

ÿ0 under the action of �2 or �, respectively. It follows that

ÿ2 � S�ÿ0 and ÿ1 � S�2ÿ0: �3�
Substituting (3) into (2), we get

ÿ � ÿ0 [ S�ÿ0 [ S2
�ÿ0: �4�

We have shown that ÿ0 is a true asymmetric unit because its

images ®ll the unit cell. Moreover, it has no common points

with its symmetric images. The reason that we decided to work

in a non-standard coordinate system was to make such a

convenient choice of the asymmetric unit possible. Moreover,

as will become evident in x5, such a choice of an asymmetric

unit substantially simpli®es Cooley±Tukey FFT calculation.

4. Symmetry in the reciprocal space

Let ÿ� denote a computational grid in the reciprocal space:

ÿ� � f�h; k� : h; k � 0; . . . ; 3N ÿ 1g:
From the mathemathical point of view, the discrete Fourier

transform acts between two identical spaces. The grid ÿ in the

real space was called the unit cell. Therefore, its counterpart,

the grid ÿ�, will be called a FFT unit cell in the reciprocal

space. Analogously, a minimal set of points at which the

Fourier transform must be evaluated will be called a FFT

asymmetric unit in the reciprocal space.

Let us introduce a shorthand notation

e�x� � exp�ÿ2�ix�; �5�
for real x. With this notation, e�0� � e�1� � 1. Let x 2 ÿ
denote a vector with coordinates �x; y� and h 2 ÿ� denote a

vector with coordinates �h; k�. Let h � x denote the scalar

product of vectors h and x. Let us also denote the Fourier

transform of function f by F. In our case, the Fourier trans-

form is given for any h 2 ÿ� by the formula

F�h� �
X
x2ÿ

f �x�e h � x
3N

� �
: �6�

The FFT unit cell in the reciprocal space is depicted in Fig. 4

Here, the symmetry axes (black triangles) are not true

threefold axes; the symmetry operation is a superposition of

rotation and multiplication by phase factors. Precisely, the

symmetry operators S�� and S��2 in the reciprocal space act as

follows:

S��F�h� � e
h � t�
3N

� �
F�RT

�h� mod � �7�

and

S��2 F�h� � e
h � t�2

3N

� �
F�RT

�2 h� mod �: �8�

The symbol RT denotes the transposition of the matrix R. As

explained in x3, in the grid coordinate system the symmetry

operator S� contains a translation by the vector t�. This is why

there are phase shifts in (7) and (8).

At a ®rst glance, one might think that a good FFT asym-

metric unit in the reciprocal space would consist of three

rhombi stretched along the diagonal of the FFT unit cell.

However, since

F�h� � S��F�h� � S��2 F�h�;
it follows from (7) and (8) that

F�N;N� � e�2=3�F�N;N�
and

F�2N; 2N� � e�1=3�F�2N; 2N�:
Consequently,

F�N;N� � F�2N; 2N� � 0: �9�
Therefore, instead of the vertices �N;N� and �2N; 2N�, we add

to the FFT asymmetric unit two extra points at �0;N� and

�N; 0�. The FFT asymmetric unit in the reciprocal space is

presented in Fig. 5



5. Computation of the Fourier transform

The de®nition of the Fourier transform is given by (6). Since ÿ
consists of three disjoint subsets [equation (2)], it follows that

the Fourier transform can be expressed as a sum of three parts:

F�h� �
X
x2ÿ

f �x�e h � x
3N

� �
�
X
x2ÿ0

f �x�e h � x
3N

� �
�
X
x2ÿ1

f �x�e h � x
3N

� �
�
X
x2ÿ2

f �x�e h � x
3N

� �
:

Hence, using (3) we get

F�h� �
X
x2ÿ0

f �x�e h � x
3N

� �
�
X
x2ÿ0

f �S�2 x�e h � S�2 x

3N

� �
�
X
x2ÿ0

f �S�x�e h � S�x

3N

� �
:

The asymmetric unit ÿ0 was chosen in such a way that each

part of the expression above is a Fourier transform. Let Y

denote the Fourier transform of the asymmetric unit:

Y�h� �
X
x2ÿ0

f �x�e h � x
3N

� �
:

Apart from the primitive-cell periodicity, the function Y has

an additional centering:

Y�h; k� � Y�h� N; k� N�:
This means that there are only 3N2 independent values of Y.

We stress that the symmetry of Y is different from that of the

®nal Fourier transform F (described in x4).

Since the symmetry operators act in the real space, then for

every function f de®ned on the real space the following is true:

f �x� � f �S�x� � f �S�2 x�:
Moreover,

X
x2ÿ0

f �x�e h � S�2 x

3N

� �
� e

h � t�2

3N

� �
Y�RT

�2 h�

and X
x2ÿ0

f �x�e h � S�x

3N

� �
� e

h � t�
3N

� �
Y�RT

�h�:

For h; k � 0; . . . ;N ÿ 1, let us de®ne three new functions Z0,

Z1 and Z2:

Z0�h� � Y�h�;

Z1�h� � e
h � t�2

3N

� �
Y�RT

�2 h�;

Z2�h� � e
h � t�
3N

� �
Y�RT

�h�:

Now, we can express the ®nal Fourier transform F by Z0, Z1

and Z2:

F�h� � Z0�h� � Z1�h� � Z2�h�:
Let us assume that h; k � 0; . . . ;N ÿ 1 and observe that in

order to compute the Fourier transform in the FFTasymmetric

unit in the reciprocal space it is enough to compute Z0, Z1 and

Z2 for such values. The reason is that, knowing these values,1

we can compute the Fourier transform F in the FFT asym-

metric unit in the reciprocal space. To this end, we will use the

following formulae for h; k � 0; . . . ;N ÿ 1:

F�h� � Z0�h� � Z1�h� � Z2�h�;
F�h� �N;N�� � Z0�h� � e�1=3�Z1�h� � e�2=3�Z2�h�;

F�h� �2N; 2N�� � Z0�h� � e�2=3�Z1�h� � e�1=3�Z2�h�:

We have just achieved a reduction of the problem of ®nding

the simple relationship of the Fourier transform of the unit cell

and the Fourier transform of the asymmetric unit.

6. Description of the algorithm

We present the conceptual ¯ow chart for the algorithm in Fig.

6. For better performance, we reorganize the 3N2 independent

data points in the asymmetric unit into three subsets of N2

points each. The values of f on these subsets are denoted by a,

b and c:

a�x; y� � f �3x; 3y�;
b�x; y� � f �3x� 1; 3y� 2�;
c�x; y� � f �3x� 2; 3y� 1�;

where x; y � 0; . . . ;N ÿ 1.

This reorganization is visualized in Fig. 7. In the ®rst step, an

external p1 FFT routine is used to compute Fourier transforms

of a, b and c; the results are stored in A, B and C, respectively.

Precisely, for h; k � 0; . . . ;N ÿ 1,
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Figure 6
Flow chart for the FFT algorithm for p3 symmetric data.

1 In fact, as explained in x4, we have to know values of Y at two additional
points �0;N� and �N; 0�.
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A�h; k� � PNÿ1

x�0

PNÿ1

y�0

a�x; y�e�hx=N�e�ky=N�;

B�h; k� � PNÿ1

x�0

PNÿ1

y�0

b�x; y�e�hx=N�e�ky=N�; �10�

C�h; k� � PNÿ1

x�0

PNÿ1

y�0

c�x; y�e�hx=N�e�ky=N�:

Most of the CPU time is spent in this step. Next, a 3-point

`butter¯y' operation is performed to calculate the values of Y.

For h; k � 0; . . . ;N ÿ 1 and m :� ÿhÿ k, we compute

Y�h; k� � A�h; k� � e��kÿm�=3N�B�h; k�
� e��hÿm�=3N�C�h; k�

and store the values of Y in three N � N arrays Z0, Z1 and Z2:

Z0�h; k� � Y�h; k�;
Z1�h; k� � e�m=3N�Y�m; h�;
Z2�h; k� � e�ÿh=3N�Y�k;m�:

In the last step, we retrieve the values of the ®nal Fourier

transform F from Z0, Z1 and Z2:

F�h� � Z0�h� � Z1�h� � Z2�h�;
F�h� �N;N�� � Z0�h� � e�1=3�Z1�h� � e�2=3�Z2�h�;

F�h� 2�N;N�� � Z0�h� � e�2=3�Z1�h� � e�1=3�Z2�h�:
The last two steps, calculating Z0, Z1 and Z2, and using them to

compute F, can be performed at one time without using any

temporary data storage, save a few register variables. To

achieve this, one has to rearrange the loops in the program.

Each of the N � N arrays is divided into three subsets, such

that, for a point h, each of the points �h; k�, �k;m� and �m; h�
lies in a different subset. Here, as before, m � ÿhÿ k. If N is

not divisible by three, one extra point with h � k � m has to

be treated separately; if N is a multiple of 3, there are three

such points left. An example of such a subdivision is presented

in Fig. 8. The loops are performed over only one of the subsets

in each of the three N � N arrays forming Y. This way nine

points are processed at a time, and no extra memory needs to

be allocated.

In x4 [following equation (9)], we observed that the FFT

asymmetric unit in the reciprocal space contains also the

points �N; 0� and �0;N�. The Fourier transform F at these

points should be computed before overwriting A, B and C,

using the following formulae:

F�0;N� � �2� e�2=3��fA�0� � e�2=3�B�0� � e�1=3�C�0�g
and

F�N; 0� � �1� 2e�2=3��fA�0� � e�1=3�B�0� � e�2=3�C�0�g;
where 0 denotes the vector �0; 0�. The presented scheme

allows one to compute the Fourier transform F in the FFT

asymmetric unit of the reciprocal space. It is done by three p1

FFTs on 1=9 of the unit cell each, followed by two passes of

butter¯y summation. Thus, the computational complexity is

reduced three times compared to the usual FFT on the whole

unit-cell data.

7. Tests and benchmarks

The speed of computing the Fourier transform of the p3

symmetric data using the algorithm described in the present

paper was compared against computing p1 FFT on the entire

unit cell.

The tests were performed as follows. The asymmetric unit,

ÿ0, was ®lled with random numbers. Next, the data were

Figure 8
Subdivision of Z0, Z1 and Z2, allowing for a fully in-place FFT calculation,
for N � 8. The loop is executed over the data points marked blue; the red
point �0; 0� is treated separately.

Figure 9
Comparison of speed of the algorithm presented in this paper (CFFT,
red) and non-symmetric Fourier transform in the unit cell (P1 FFT,
green). Average number of CPU cycles elapsed is plotted versus the size
of the unit cell.

Figure 7
Points in the asymmetric unit in the real space for N � 6. Decomposition
into three regular subgrids (colored red, green and blue here) eases the
computation of the p1 Fourier transform.



expanded into ÿ using symmetry operators. Then the Fourier

transform of the data was calculated by two methods. First, it

was computed using the traditional scheme of directly

applying p1 FFT to the expanded data. Second, we applied the

algorithm we invented (x6) to ÿ0. The latter involved doing

three p1 FFT calculations to compute the A, B and C data

arrays at its ®rst stage [see equation (10)]. The numerical

values of the ®nal Fourier transform were the same in the two

cases to the machine precision. To make the benchmarks fair,

we utilized the same p1 FFT routine for calculating A, B and

C, and for the unit-cell calculation. In both cases, we used

functions from the FFTW library by Frigo & Johnson (1998).

To estimate the gain in speed, we have applied both methods

1000 times for each of several sizes of data arrays, measuring

the number of CPU cycles elapsed in each calculation. We did

not include in our benchmarks the CPU time spent on

expanding the data from the asymmetric unit to the unit cell.

The results for asymmetric units containing 3� 322, 3� 642,

3� 962, 3� 1282 and 3� 1922 data points are presented in

Fig. 9. The amount of time spent in FFT gets up to three times

smaller when our algorithm is used. Three, being the number

of symmetry operators in the p3 group, is the maximal possible

gain due to symmetry reduction.

8. Conclusions

The main idea of the presented approach is to reduce

symmetry in such a way that it is enough to calculate p1 FFT in

the asymmetric unit only and then, in a computationally

simpler step, recover the ®nal result. For the central step in the

calculation consisting of general p1 FFTs, any generic fast

Fourier subroutine can be used. Thus, one can pro®t from the

substantial effort made in developing very ef®cient p1 FFT

routines (e.g. Frigo & Johnson, 1998; Intel, 2001).

In paper II of this series (Rowicka et al., 2002a), we will

show that schemes similar to the one presented here can be

designed for more than 110 crystallographic groups. All these

cases share the use of a non-standard computational grid and

asymmetric unit. This may bring an issue of compatibility with

conventions used in some existing programs. However,

conventions used in these programs have no fundamental

justi®cation and can be easily adjusted. In paper III (Rowicka

et al., 2002b), we will present a conceptually more complex

solution that allows for a conventional choice of coordinate

system (i.e. with symmetry axes going through the origin).
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